MACHINE LEARNING AVEC PYTHON

Formation certifiante - Code CPF 93 835 - 3 jours (21 heures)

Formations en présentiel

Formations Blended - Learning

Formations E-learning Tutoré

Présentiel

Blended - Learning

E-learning tutoré

Accueil  >  Les métiers du numérique  >   Big Data  >  Machine Learning avec Python

A l'issue de la formation, les stagiaires seront capables de :

  • Connaître les concepts de base de l’apprentissage automatique en Python
  • Nettoyage des données pour optimiser leur intégration dans le modèles de Machine Learning
  • Effectuer une régression dans un environnement d’apprentissage supervisé
  • Effectuer une classification dans un environnement d’apprentissage supervisé, en enseignant au modèle des paramètres définis
  • Mesure et évaluation du pipeline d’apprentissage machine afin d’améliorer la solution au fil du temps.
  • Lecture, exploration, nettoyage et préparation des données avec Pandas, la bibliothèque d’analyse des tables de données la plus populaire
  • Utilisation la bibliothèque Scikit-Learn pour déployer des modèles prédéfinis, les former et voir les résultats en quelques lignes de code
  • Utilisation de l’optimisation hyper-paramétrique pour obtenir la meilleure version possible de chaque modèle pour une application spécifique

La formation Machine Learning avec Python est accessible à toute personne ayant :

  • Une bonne maîtrise de l’algorithmie
  • Des connaissances en mathématiques et des statistiques
  • Des connaissance de Python (Formation Programmation en Python)

Des exercices, des études de cas, des QCM et des tours de table permettent au formateur d’évaluer l’atteinte des objectifs ainsi que la progression du stagiaire à différents moments de la formation.
La validation de toutes les compétences requises est obligatoire pour l’obtention d’un BADGE ou d’un Certificat. L'obtention du Certificat est validé par la réalisation et la présentation d'un projet devant un jury.

  • Directeurs/chefs de projet ou responsable métier
  • Responsable système d’informations
  • Développeurs informatiques
  • Consultants en business intelligence
  • Ingénieurs d’étude, de recherche et développement
  • Architecte système et logiciel
  • Consultants techniques
  • Consultants business
  • Statisticiens et Mathématiciens
  • Data scientist (analyse de données) ou Data miner (fouilleur des données)
  • Tout développeur ou informaticien souhaitant développer des compétences en analyse de données et BIG DATA

PROGRAMME DE FORMATION

MACHINE LEARNING AVEC PYTHON

Initiation au machine Learning

  • Fondements du Machine Learning
  • Introduction au Machine Learning
  • Groupes de Machine Learning
  • Besoins du Machine Learning
  • Cycle de vie du Machine Learning
  • Identification des biais cognitifs humains

Classification du machine Learning

  • Théorie du Naïve Bayes
  • Régression logistique binomiale
  • Théorie k-NN
  • Arbres de classification
  • Forêts d’arbres de décision
  • Support vector machine

Régression linéaire avec Python

  • Définition de la régression
  • Régression linéaire univariée
  • Régression linéaire multivariée
  • Régression linéaire polynomiale
  • Régressions régularisées
  • Programmer une régression linéaire en Python
  • Utilisation des expressions lambda et des listes en intention
  • Afficher la régression avec MathPlotLib
  • L’erreur quadratique
  • La variance
  • Le risque

Initiation au clustering

  • Définition du clustering
  • Méthode k-means
  • Clustering hiérarchique

Initiation aux Règles d’association

  • Définition des règles d’association
  • Initiation à la méthode A priori
  • Évaluation des règles d’association candidates

Réduction dimensionnelle

  • Définition de la réduction dimensionnelle
  • Utilisation des méthodes de sélection de variables
  • Méthode ACP
  • Méthode ADL

Algorithmes Du Machine Learning

  • Initiation à l’ensemble learning
  • Apprentissage par renforcement
  • Régression linéaire simple et multiple
  • Régression polynomiale
  • Séries temporelles
  • Régression logistique et applications en scoring
  • Classification hiérarchique et non hiérarchique (K-Means)
  • Classification par arbres de décision ou approche Naïve Bayes
  • Ramdom Forest (développement des arbres de décision)
  • Gradiant Boosting
  • Réseaux de neurones
  • Machine à support de vecteurs
  • Deep Learning : exemples et raisons du succès actuel
  • Text Mining : analyse des corpus de données textuelles

Atelier cas pratique

Numpy Et Scipy

  • Tableaux et matrices
  • Algèbre linéaire avec Numpy
  • Numpy et MathPlotLib

Scikit learn

  • Machine Learning avec SKLearn
  • Régression linéaire
  • Création du modèle
  • Echantillonnage
  • Randomisation
  • Apprentissage avec fit
  • Prédiction du modèle
  • Metrics
  • Choix du modèle
  • PreProcessing et Pipeline
  • Régressions non polynomiales

Test et validation des algorithmes

  • Validation des algorithmes
  • Atelier cas pratique
  • Techniques de ré-échantillonnage en jeu d’apprentissage, de validation et de test
  • Mesures de performance des modèles prédictifs
  • Matrice de confusion, de coût et la courbe ROC et AUC

Atelier cas pratique

Financement avec le CPF via

le site MonCompteFormation

POUR TOUTE DEMANDE DE RENSEIGNEMENT OU DE DEVIS